

- Organization . . . 131072 × 8-Bit Flash Memory
- Pin Compatible With Existing 1M-bit EPROMs
- High-Reliability MIL-PRF-38535 Processing
- V_{CC} Tolerance ±10%
- All Inputs/Outputs TTL Compatible
- Maximum Access/Minimum Cycle Time 28F010B-12 120 ns '28F010B-15 150 ns '28F010B-20 200 ns
- Industry-Standard Programming Algorithm
- 10000 Program/Erase-Cycle
- Latchup Immunity of 250 mA on All Input and Output Lines
- Low Power Dissipation (V_{CC} = 5.5 V) –Active Write ... 55 mW –Active Read ... 165 mW –Electrical Erase ... 82.5 mW
 - –Standby . . . 0.55 mW
 - (CMOS-Input Levels)
- Military Temperature Range – 55°C to 125°C

JDD		PACK	
V _{PP} [A16 [A15 [A12 [A7 [A6 [A3 [A3 [A2 [A1 [A0 [DQ0 [DQ1 [DQ2 [1 2 3 4 5 6 7 8 9	VIEW) 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18	V _{CC} W NC A14 A13 A8 A9 A11 G A10 E DQ7 DQ6 DQ5 DQ4
V _{SS}	16	17	DQ3

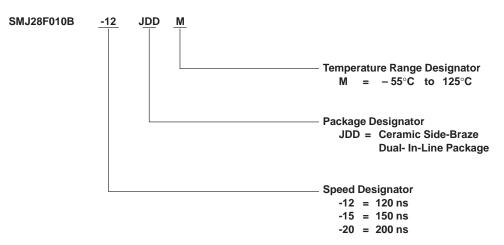
PIN NO	DMENCLATURE
A0-A16	Address Inputs
DQ0-DQ7	Inputs (programming)/Outputs
E	Chip Enable
G	Output Enable
NC	No Internal Connection
VCC	5-V Power Supply
VPP	12-V Power Supply
VSS	Ground
W	Write Enable

description

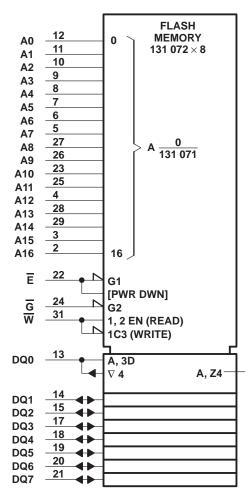
The SMJ28F010B is a 1048576-bit, programmable read-only memory that can be electrically bulk-erased and reprogrammed. It is available in 10000 program/erase-endurance-cycle version.

The SMJ28F010B flash memory is offered in a 32-lead ceramic 600-mil side-braze dual in-line package (DIP) (JDD suffix) and a leadless ceramic chip carrier (FE suffix).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

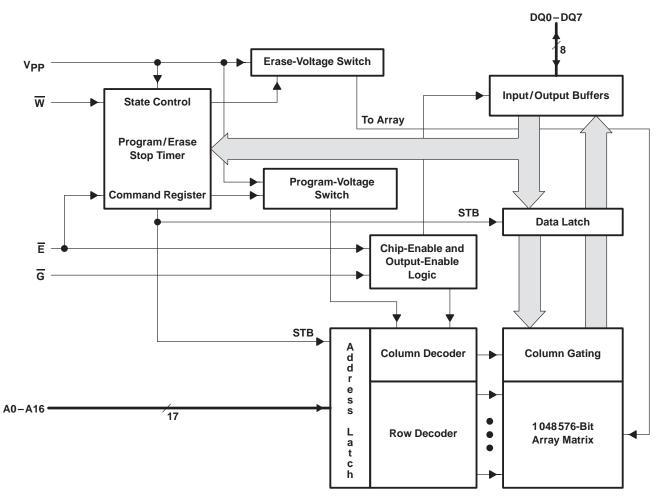

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1998, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.


SMJ28F010B 131072 BY 8-BIT **FLASH MEMORY** SGMS738 - APRIL 1998

device symbol nomenclature

logic symbol[†]



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the JDD package.

SMJ28F010B 131072 BY 8-BIT **FLASH MEMORY** SGMS738 - APRIL 1998

functional block diagram

operation

Table 1 lists the modes of operation for the device.

			_	_	FU	лостюи†		
	MODE	V _{РР} ‡ (1)	Ē (22)	G (24)	A0 (12)	A9 (26)	W (31)	DQ0-DQ7 (13-15, 17-21)
	Read	VPPL	VIL	VIL	Х	Х	VIH	Data Out
Read	Output Disable	VPPL	VIL	VIH	Х	Х	VIH	Hi-Z
	Standby and Write Inhibit	VPPL	VIH	Х	Х	Х	Х	Hi-Z
Read	Algorithm-Selection Mode	V _{PPL}	VIL	VIL	VIL	VID	VIH	Manufacturer-Equivalent Code 89h
					VIH			Device-Equivalent Code B4h
	Read	VPPH	VIL	VIL	Х	Х	VIH	Data Out
Read/	Output Disable	V _{PPH}	VIL	VIH	Х	Х	VIH	Hi-Z
Write	Standby and Write Inhibit	V _{PPH}	VIH	Х	Х	Х	Х	Hi-Z
	Write	VPPH	VIL	VIH	Х	Х	VIL	Data In

Table	1.	Or	berat	ion	Mode	s
I GIOIO					1110000	~

[†] X can be VIL or VIH.

 $V_{PPL} \leq V_{CC} + 2 V$; V_{PPH} is the programming voltage specified for the device. For more details, see the recommended operating conditions.

read/output disable

When the outputs of two or more SMJ28F010B devices are connected in parallel on the same bus, the output of any particular device in the circuit can be read with no interference from the competing outputs of other devices. Reading the output of the SMJ28F010B is enabled when a low-level signal is applied to the \overline{E} and \overline{G} pins. All other devices in the circuit must have their outputs disabled by applying a high-level signal to one of these pins.

standby and write inhibit

Active I_{CC} current can be reduced from 30 mA to 1 mA by applying a high TTL level on \overline{E} or to 100 μ A with a high CMOS level on \overline{E} . In this mode, all outputs are in the high-impedance state. The SMJ28F010B draws active current when it is deselected during programming, erasure, or program/erase verification. It continues to draw active current until the operation is terminated.

algorithm-selection mode

The algorithm-selection mode provides access to a binary code identifying the correct programming and erase algorithms. This mode is activated when A9 (pin 26) is forced to V_{ID} . Two identifier bytes are accessed by toggling A0. All other addresses must be held low. A0 low selects the manufacturer-equivalent code 89h, and A0 high selects the device-equivalent code B4h, as shown in Table 2.

Table 2. Algorithm-Selection Modes

IDENTIFIER§					PI	NS				
	A0	DQ7	DQ6	DQ5	DQ4	DQ3	DQ2	DQ1	DQ0	HEX
Manufacturer-Equivalent Code	VIL	1	0	0	0	1	0	0	1	89
Device-Equivalent Code	VIH	1	0	1	1	0	1	0	0	B4

 $E = V_{IL}, \overline{G} = V_{IL}, A1 - A8 = V_{IL}, A9 = V_{ID}, A10 - A16 = V_{IL}, V_{PP} = V_{PPL}.$

programming and erasure

In the erased state, all bits are at a logic 1. Before erasing the device, all memory bits must be programmed to a logic 0. Then the entire chip is erased. At this point, the bits, which are now logic 1s, can be programmed accordingly. See the fast-write and fast-erase algorithms for further details.

command register

The command register controls the program and erase functions of the SMJ28F010B. The algorithm-selection mode can be activated using the command register in addition to the previously described method. When V_{PP} is high, the contents of the command register and the function being performed can be changed. The command register is written to when \overline{E} is low and \overline{W} is pulsed low. The address is latched on the leading edge of the pulse, while the data is latched on the trailing edge. Accidental programming or erasure is minimized because two commands must be executed to invoke either operation. The command register is inhibited when V_{CC} is below the erase/write lockout voltage, V_{LKO} .

power-supply considerations

Each device must have a $0.1-\mu$ F ceramic capacitor connected between V_{CC} and V_{SS} to suppress circuit noise. Changes in current drain on V_{PP} require it to have a bypass capacitor as well. Printed-circuit traces for both power supplies should be appropriate to handle the current demand.

command definitions

The commands include read, algorithm-selection mode, set-up-erase, erase, erase, erase-verify, set-up-program, program, program-verify, and reset. Table 3 lists the command definitions with the required bus cycles.

COMMAND	REQUIRED	FIRS	ST BUS CYCLE		SECOND BUS CYCLE				
COMMAND	BUS CYCLES	OPERATION [†]	ADDRESS	DATA	OPERATION [†]	ADDRESS	DATA		
Read	1	Write	Х	00h	Read	RA	RD		
Algorithm-Selection Mode	3	Write	х	90h	Read	Read 0000h 0001h			
Set-Up-Erase/Erase	2	Write	Х	20h	Write	Х	20h		
Erase-Verify	2	Write	EA	A0h	Read	Х	EVD		
Set-Up-Program/Program	2	Write	Х	40h	Write	PA	PD		
Program-Verify	2	Write	Х	C0h	Read	Х	PVD		
Reset	2	Write	Х	FFh	Write	Х	FFh		

Table 3. Command Definitions

Legend:

EA Address of memory location to be read during erase verify

RA Address of memory location to be read

PA Address of memory location to be programmed. Address is latched on the falling edge of \overline{W} .

RD Data read from location RA during the read operation

EVD Data read from location EA during erase verify

PD Data to be programmed at location PA. Data is latched on the rising edge of \overline{W} .

PVD Data read from location PA during program verify

[†] Modes of operation are defined in Table 1.

read command

Memory contents can be accessed while V_{PP} is high or low. When V_{PP} is high, writing 00h into the command register invokes the read operation. When the device is powered up, the default contents of the command register are 00h and the read operation is enabled. The read operation remains enabled until a different command is written to the command register.

algorithm-selection mode command

The algorithm-selection mode is activated by writing 90h into the command register. The device-equivalent code (B4h) is identified by the value read from address location 0001h, and the manufacturer-equivalent code (89h) is identified by the value read from address location 0000h.

set-up-erase/erase commands

The erase-algorithm initiates with $\overline{E} = V_{IL}$, $\overline{W} = V_{IL}$, $\overline{G} = V_{IH}$, $V_{PP} = V_{PPH}$, and $V_{CC} = 5$ V. To enter the erase mode, write the set-up-erase command, 20h, into the command register. After the SMJ28F010B is in the erase mode, writing a second erase command, 20h, into the command register invokes the erase operation. The erase operation begins on the rising edge of \overline{W} and ends on the rising edge of the next \overline{W} . The erase operation requires at least 9.5 ms to complete before the erase-verify command, A0h, can be loaded.

Maximum erase timing is controlled by the internal stop timer. When the stop timer terminates the erase operation, the device enters an inactive state and remains inactive until a command is received.

program-verify command

The SMJ28F010B can be programmed sequentially or randomly, because it is programmed one byte at a time. Each byte must be verified after it is programmed. The program-verify operation prepares the device to verify the most recently programmed byte. To invoke the program-verify operation, C0h must be written into the command register. The program-verify operation ends on the rising edge of \overline{W} .

While verifying a byte, the SMJ28F010B applies an internal margin voltage to the designated byte. If the true data and programmed data match, programming continues to the next designated byte location; otherwise, the byte must be reprogrammed. Figure 1 shows how commands and bus operations are combined for byte programming.

erase-verify command

All bytes must be verified following an erase operation. After the erase operation is complete, an erased byte can be verified by writing the erase-verify command, A0h, into the command register. This command causes the device to exit the erase mode on the rising edge of \overline{W} . The address of the byte to be verified is latched on the falling edge of \overline{W} . The erase-verify operation remains enabled until a command is written to the command register.

To determine whether all the bytes have been erased, the SMJ28F010B applies a margin voltage to each byte. If FFh is read from the byte, all bits in the designated byte have been erased. The erase-verify operation continues until all of the bytes have been verified. If FFh is not read from a byte, an additional erase operation needs to be executed. Figure 2 shows the combination of commands and bus operations for electrically erasing the SMJ28F010B.

set-up-program/program commands

The programming algorithm initiates with $\overline{E} = V_{IL}$, $\overline{W} = V_{IL}$, $\overline{G} = V_{IH}$, $V_{PP} = V_{PPH}$, and $V_{CC} = 5$ V. To enter the programming mode, write the set-up-program command, 40h, into the command register. The programming operation is invoked by the next write-enable pulse. Addresses are latched internally on the falling edge of \overline{W} , and data is latched internally on the rising edge of \overline{W} . The programming operation begins on the rising edge of \overline{W} and ends on the rising edge of the next \overline{W} pulse. The program operation requires 10 µs for completion before the program-verify command, C0h, can be loaded.

Maximum program timing is controlled by the internal stop timer. When the stop timer terminates the program operation, the device enters an inactive state and remains inactive until a command is received.

reset command

To reset the SMJ28F010B after set-up-erase-command or set-up-program-command operations without changing the contents in memory, perofrm two consecutive writes of FFh into the command register. After executing the reset command, the device defaults to the read mode.

fast-write algorithm

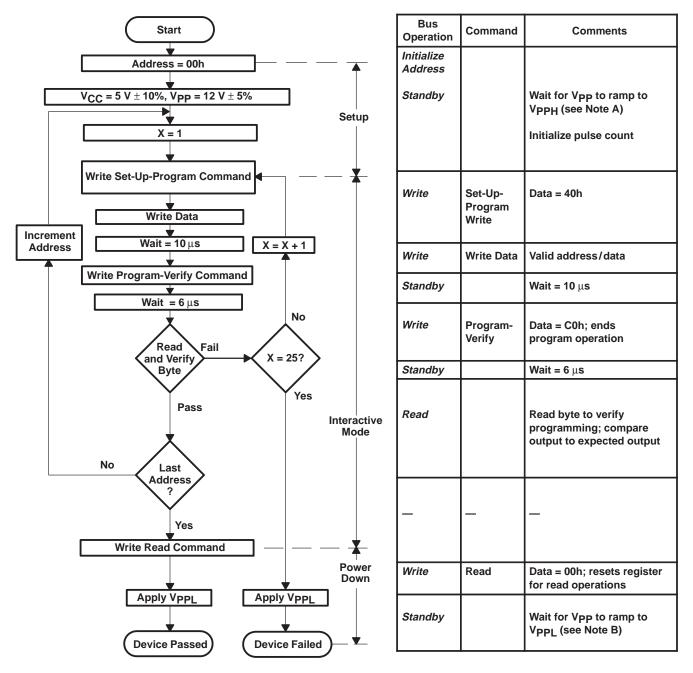
Figure 1 shows the process flow for programming the SMJ28F010B. The fast-write algorithm programs in a nominal time of two seconds.

fast-erase algorithm

Figure 2 shows the process flow for erasing the SMJ28F010B using the fast-erase algorithm. The memory array must be completely programmed (using the fast-write algorithm) before erasure begins. Erasure typically occurs in one second.

parallel erasure

Several devices can be erased in parallel, reducing total erase time. Since the rate at which each flash memory can erase differs, every device must be verified separately after each erase pulse. After a given device has been successfully erased, the erase command should not be reissued to this device. All devices that complete erasure should be masked until the parallel erasure process is finished (see Figure 3).


Examples of how to mask a device during parallel erase include driving the \overline{E} pin high, writing the read command (00h) to the device when the others receive a set-up-erase or erase command, and disconnecting the device from all electrical signals with relays or other types of switches.

flow charts

Figure 1, Figure 2, and Figure 3 are flow charts showing the fast-write algorithm, the fast-erase algorithm, and the parallel-erase flow.

flow charts (continued)

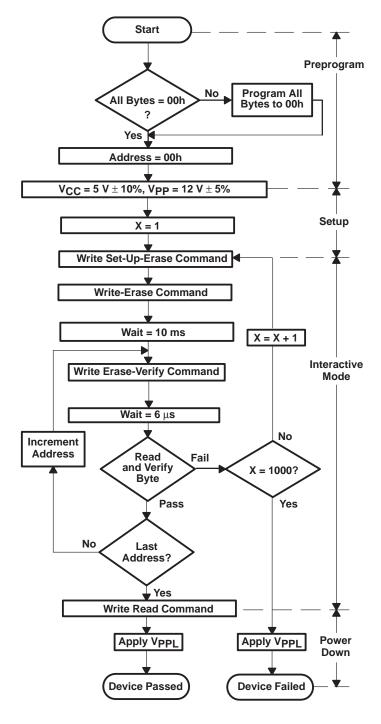
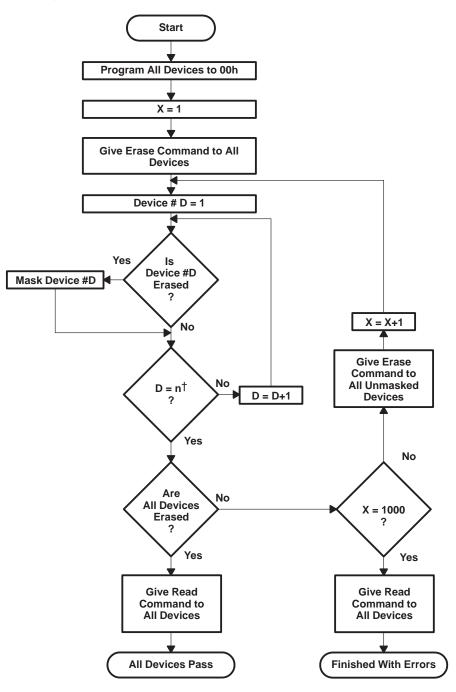

NOTES: A. See the recommended operating conditions for the value of VPPH. B. See the recommended operating conditions for the value of VPPL.

Figure 1. Algorithm-Selection Programming Flow Chart

SMJ28F010B 131072 BY 8-BIT FLASH MEMORY SGMS738 - APRIL 1998

flow charts (continued)


Bus Operation	Command	Comments
		Entire memory must = 00h before erasure
		Use fast-write programming algorithm
		Initialize addresses
Standby		Wait for Vpp to ramp to Vppң (see Note A)
		Initialize pulse count
Write	Set-Up- Erase	Data = 20h
Write	Erase	Data = 20h
Standby		Wait = 10 ms
Write	Erase- Verify	Addr = Byte to verify; Data = A0h; ends the erase operation
Standby		Wait = 6 µs
Read		Read byte to verify erasure; compare output to FFh
Write	Read	Data = 00h; resets register for read operations
Standby		Wait for V _{PP} to ramp to V _{PPL} (see Note B)

NOTES: A. Refer to the recommended operating conditions for the value of VPPH. B. Refer to the recommended operating conditions for the value of VppI.

flow charts (continued)

 \dagger n = number of devices being erased.

Figure 3. Parallel-Erase Flow Chart

SMJ28F010B 131072 BY 8-BIT FLASH MEMORY SGMS738 – APRIL 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} (see Note 1)	0.6 V to 7 V
Supply voltage range, VPP	0.6 V to 14 V
Input voltage range (see Note 2): All inputs except A9	$\dots \dots \dots -0.6$ V to 7 V
A9	0.6 V to 13.5 V
Output voltage range (see Note 3)	$\dots \dots \dots -0.6$ V to 7 V
Output short-circuit current (see Note 4)	200 mA
Operating free-air temperature range during read/erase/program, T _A	– 55° C to 125°C
Storage temperature range, T _{stg}	–65°C to 150°C
Maximum power dissipation, P_{D}	1 W
Lead temperature (soldering, 10 seconds)	300°C
Junction temperature, T _J	150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to VSS.

- 2. The voltage on any input pin can undershoot to -2 V for periods less than 20 ns.
- 3. The voltage on any output pin can overshoot to 7 V for periods less than 20 ns.
- 4. No more than one output can be shorted at a time, and the duration cannot exceed one second.

recommended operating conditions

				MIN	NOM	MAX	UNIT	
VCC	Supply voltage	During write/read/flash erase		4.5	5	5.5	V	
Vaa	VPP Supply voltage		0		V _{CC} + 2	V		
VPP Supply voltage Dur		During write/read/flash erase (VPPH	write/read/flash erase (V _{PPH})			12.6	V	
	Vuu High-level de input volt:	ich lovel de input veltage		2		V _{CC} +0.5	V	
VIН	VIH High-level dc input voltage		CMOS			V _{CC} +0.5	v	
V	Low-level dc input volt	200	TTL	-0.5		0.8	V	
VIL		CMOS		GND – 0.2		GND+0.2	v	
VID	VID Voltage level on A9 for algorithm-selection mode			11.5		13	V	
ТА	T _A Operating free-air temperature			-55		125	°C	

SMJ28F010B 131072 BY 8-BIT **FLASH MEMORY**

SGMS738 - APRIL 1998

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER		TEST CO	ONDITIONS	MIN	MAX	UNIT
			V _{CC} = 4.5 V,	I _{OH} = – 2.5 mA	2.4		M
VOH	High-level output voltage		V _{CC} = 4.5 V,	l _{OH} = – 100 μA	V _{CC} – 0.4		V
M			V _{CC} = 4.5 V,	I _{OL} = 5.8 mA		0.45	V
VOL	Low-level output voltage		I _{OL} = 100 μA			0.1	V
IID	A9 algorithm-selection-mode current		V _{CC} = 5.5 V,	A9 = V _{ID} max		200*	μA
1.	Innut ourrent (lookogo)	All except A9	V _{CC} = 5.5 V,	$V_I = 0 V \text{ to } 5.5 V$	±1		۸
Ι	Input current (leakage)	A9	V _{CC} = 5.5 V,	$V_{I} = 0 V$ to 13 V		±200	μA
lo	Output current (leakage)		V _{CC} = 5.5 V,	$V_{O} = 0 V \text{ to } V_{CC}$		±10	μΑ
	VPP supply current (read/standby)		V _{PP} = V _{PPH} ,	Read mode	200		μA
IPP1			V _{PP} = V _{PPL}		μΑ		
I _{PP2}	VPP supply current (during program p	oulse)	V _{PP} = V _{PPH}			30*	mA
I _{PP3}	VPP supply current (during flash eras	e)	V _{PP} = V _{PPH}			30*	mA
I _{PP4}	VPP supply current (during program/	erase-verify)	V _{PP} = V _{PPH}			5.0*	mA
1)/	TTL-input level	V _{CC} = 5.5 V,	E = V _{IH}		1	mA
ICCS	V _{CC} supply current (standby)	CMOS-input level	V _{CC =} 5.5 V,	$\overline{E} = V_{CC} \pm 0.2 V$		100	μΑ
ICC1	V _{CC} supply current (active read)	•	$V_{CC} = 5.5 V,$ f = 6 MHz, $\overline{G} = V_{IH}$	Ē = V _{IL} , I _{OUT} = 0 mA,		30	mA
I _{CC2}	V _{CC} average supply current (active w	vrite)	V _{CC} = 5.5 V, Programming in	Ē = V _{IL} , progress		10*	mA
I _{CC3}	V_{CC} average supply current (flash era	ase)	V _{CC} = 5.5 V, Erasure in progr	Ē = V _{IL} , ess		15*	mA
ICC4	V _{CC} average supply current (program	n/erase-verify)	V _{CC} = 5.5 V, V _{PP} = V _{PPH} , Program/erase-	$\overline{E} = V_{ L},$ verify in progress		15*	mA
VLKO	V _{CC} erase/write-lockout voltage		V _{PP} = V _{PPH}		2.5		V

* This parameter is not production tested.

capacitance over recommended range of supply voltage

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
C _{i1}	Input capacitance	$V_I = 0 V$, $T_A = 25^{\circ}C$, f = 1 MHz		10*	pF
Co	Output capacitance	$V_O = 0 V$, $T_A = 25^{\circ}C$, f = 1 MHz		12*	pF
C _{i2}	VPP input capacitance	$V_I = 0 V$, $T_A = 25^{\circ}C$, f = 1 MHz		12*	pF

* This parameter is not production tested.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (see Figure 6)

	PARAMETER	TEST	ALTERNATE	'28F01	'28F010B-12		0B-15	'28F010B-20		UNIT	
	PARAMETER	CONDITIONS	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	
^t a(A)	Access time from address, A0-A16		^t AVQV		120		150		200	ns	
^t a(E)	Access time from chip enable, \overline{E}		^t ELQV		120		150		200	ns	
^t en(G)	Access time from output enable, G		^t GLQV		50		55		60	ns	
^t c(R)	Cycle time, read	C _L = 100 pF, 1 Series 74	t _{AVAV}	120		150		200		ns	
^t d(E)	Delay time, E low to low-Z output		^t ELQX	0*		0*		0*		ns	
^t d(G)	Delay time, G low to low-Z output	TTL load, Input t _r ≤ 10 ns, Input t _f ≤ 10 ns	^t GLQX	0*		0*		0*		ns	
^t dis(E)	Chip disable time to Hi-Z output		^t EHQZ	0*	55*	0*	55*	0*	55*	ns	
^t dis(G)	Output disable time to Hi-Z output		^t GHQZ	0*	30*	0*	35*	0*	45*	ns	
^t h(D)	Hold time, data valid from address, E or G (see Note 5)		^t AXQX	0*		0*		0*		ns	
trec(W)	Recovery time, \overline{W} before read		tWHGL	6		6		6		μs	

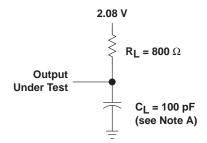
* This parameter is not production tested.

NOTE 5: Whichever occurs first

timing requirements-write/erase/program operations (see Figure 7 and Figure 8)

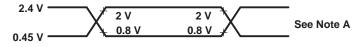
		ALTERNATE SYMBOL	'28F010B-12			'28F010B-15			'28F010B-20			
			MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
^t c(W)	Cycle <u>tim</u> e, write using W	tAVAV	120			150			200			ns
^t c(W)PR	Cycle time, program- ming operation	^t WHWH1	10			10			10			μs
^t c(W)ER	Cycle time, erase operation	^t WHWH2	9.5	10		9.5	10		9.5	10		ms
^t h(A)	Hold time, address	tWLAX	60			60			60			ns
^t h(E)	Hold time, E	tWHEH	0			0			0			ns
^t h(WHD)	Hold time, data valid after \overline{W} high	^t WHDX	10			10			10			ns
^t su(A)	Setup time, address	t _{AVWL}	0			0			0			ns
^t su(D)	Setup time, data	^t DVWH	50			50			50			ns
^t su(E)	Setup time, \overline{E} before	^t ELWL	20			20			20			ns
t _{su} (VPPEL)	Setup time, V_{PP} to \overline{E} low	^t VPEL	1			1			1			μs
trec(W)	Recovery time, W before read	^t WHGL	6			6			6			μs
trec(R)	Recov <u>ery</u> time, read before W	^t GHWL	0			0			0			μs
^t w(W)	Pulse duration, \overline{W} (see Note 6)	twlwh	60			60			60			ns
^t w(WH)	Pulse duration, W high	^t WHWL	20			20			20			ns
^t r(VPP)	Rise time, V _{PP}	^t VPPR	1			1			1			μs
tf(VPP)	Fall time, VPP	tVPPF	1			1			1			μs

NOTE 6: Rise/fall time \leq 10 ns.



SMJ28F010B 131072 BY 8-BIT FLASH MEMORY SGMS738 – APRIL 1998

		-		
timing requirements —				$(a a a \Gamma; a a a a)$
timina realifements -	. alternative	E-controlled	Writes	
tilling requirements	ancinative		WIIICO	(See Figure S)


		ALTERNATE SYMBOL	'28F010B-12		'28F010B-15		'28F010B-20		
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
^t c(W)	Cycle time, write using E	t _{AVAV}	120		150		200		ns
^t c(E)PR	Cycle time, programming operation	^t EHEH	10		10		10		μs
^t h(EA)	Hold time, address	^t ELAX	80		80		80		ns
^t h(ED)	Hold time, data	^t EHDX	10		10		10		ns
^t h(W)	Hold time, \overline{W}	^t EHWH	0		0		0		ns
t _{su(A)}	Setup time, address	^t AVEL	0		0		0		ns
^t su(D)	Setup time, data	^t DVEH	50		50		50		ns
^t su(W)	Setup time, \overline{W} before \overline{E}	tWLEL	0		0		0		ns
t _{su} (VPPEL)	Setup time, V_{PP} to \overline{E} low	^t VPEL	1		1		1		μs
^t rec(E)R	Recovery time, write using E before read	^t EHGL	6		6		6		μs
trec(E)W	Recovery time, read before write using \overline{E}	^t GHEL	0		0		0		μs
^t w(E)	Pulse duration, write using E	^t ELEH	70		70		70		ns
^t w(EH)	Pulse duration, write, E high	^t EHEL	20		20		20		ns

PARAMETER MEASUREMENT INFORMATION

NOTE A: CL includes probe and fixture capacitance.

Figure 4. AC Test Output Load Circuit

NOTE A: The ac testing inputs are driven at 2.4 V for logic high and 0.45 V for logic low. Timing measurements are made at 2 V for logic high and 0.8 V for logic low on both inputs and outputs. Each device should have a 0.1-μF ceramic capacitor connected between V_{CC} and V_{SS} as closely as possible to the device pins.

Figure 5. AC Test Input/Output Waveform

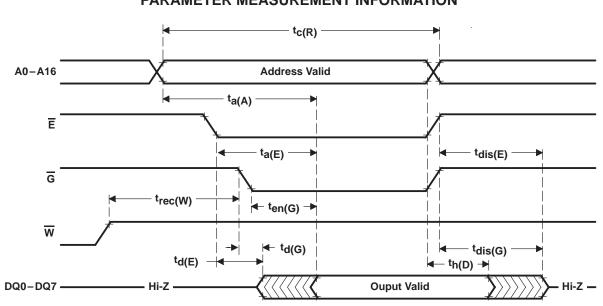
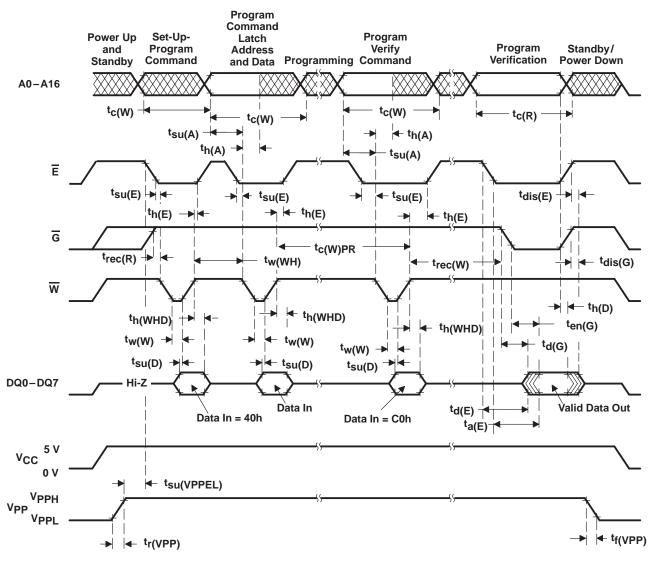



Figure 6. Read-Cycle Timing

SMJ28F010B 131072 BY 8-BIT FLASH MEMORY SGMS738 – APRIL 1998

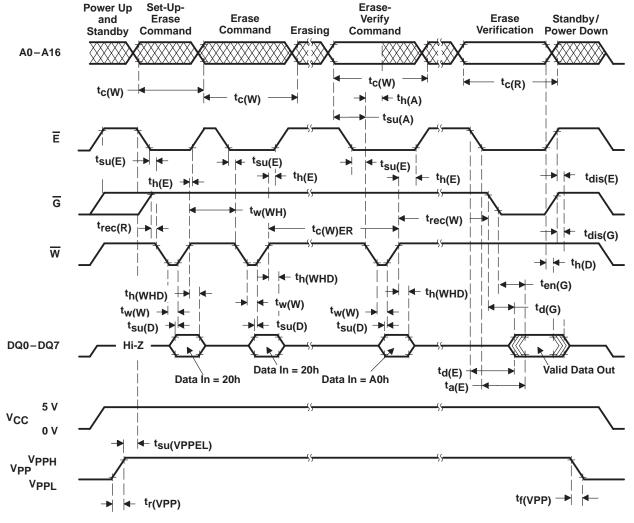
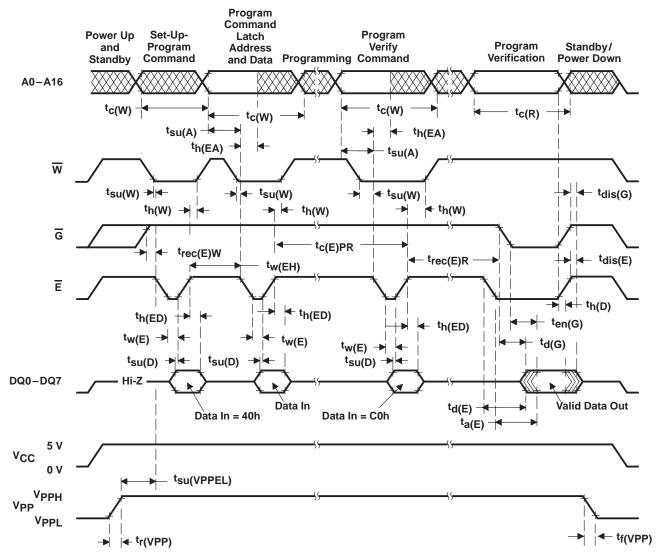
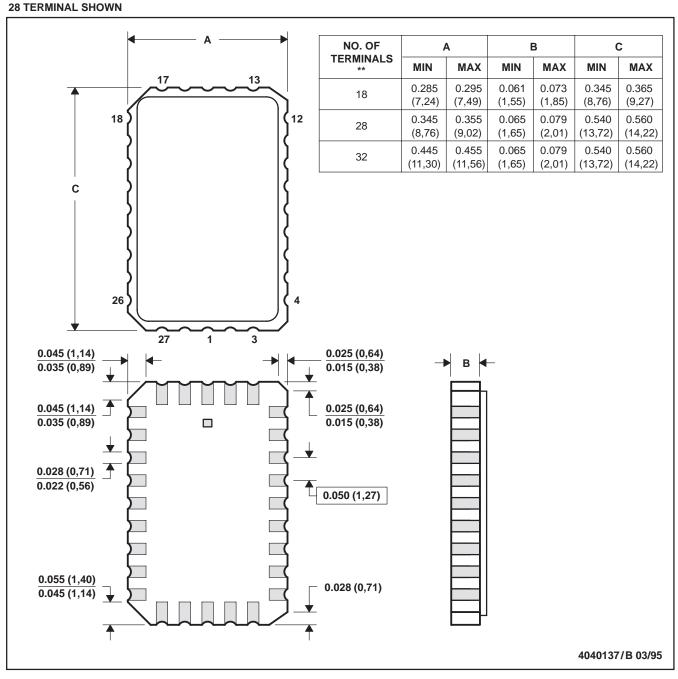


Figure 8. Flash-Erase-Cycle Timing



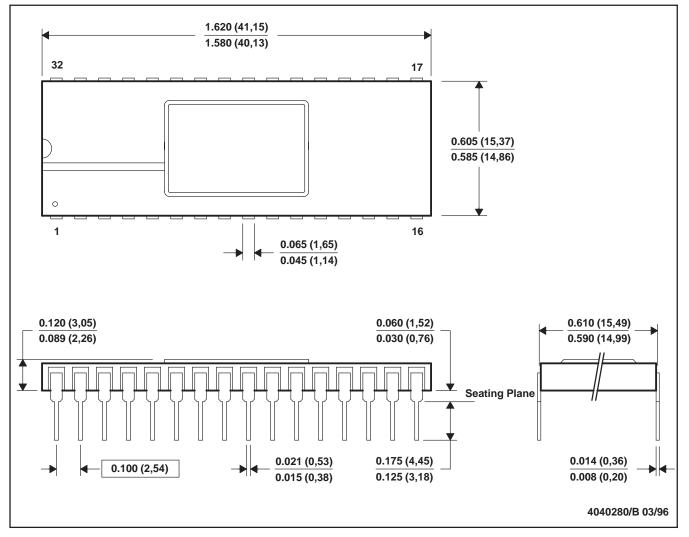

Figure 9. Write-Cycle (Alternative E-Controlled Writes) Timing

MECHANICAL DATA

LEADLESS CERAMIC CHIP CARRIER

FE (R-CQCC-N**)

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- $\label{eq:constraint} \textbf{C}. \quad \textbf{This package can be hermetically sealed with a metal lid.}$
- D. The terminals are gold plated.

SMJ28F010B 131072 BY 8-BIT FLASH MEMORY SGMS738 – APRIL 1998

MECHANICAL DATA

JDD (R-CDIP-T32)

CERAMIC SIDE-BRAZE DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals will be gold plated.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current and complete.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1998, Texas Instruments Incorporated