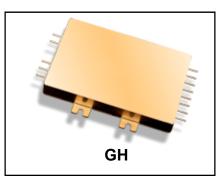


HIGH RELIABILITY, HIGH EFFICIENCY RADIATION HARDENED DC-DC CONVERTER

Description


The GH-Series is a family of low voltage single output DC-DC converters. They are specifically designed in response to the need for low voltage at moderate current levels with the high efficiency and tight regulation dictated by modern digital processing applications. The converters are radiation hardened, high reliability converters designed for extended operation in hostile environments. Their small size and low weight make them ideal for applications such as geostationary earth orbit satellites and deep space probes. They exhibit a high tolerance to event total ionizing dose, single effects and environmental stresses such as temperature extremes, mechanical shock, and vibration. All components are fully de-rated to meet the requirements of MIL-STD-975, MIL-STD-1547 except for the CDR type of capacitors, a capacitor with 50V rating is used for in-circuit voltage stress of less than10V. Thorough analyses and documentation including beginning-of-life (BOL) and endof-life (EOL) electrical worst case (WCA) operation, component stress and de-rating, radiation susceptibility (TREE), thermal stress, failure mode and effects (FMEA), and reliability (MTBF) are available for customer review.

The design incorporates a fixed frequency topology with magnetic feedback. Synchronous rectification is deployed to maximize efficiency performance. The converters include an internal EMI filter that is capable of meeting the conducted emission requirements of most major satellite power busses. Incorporation of many functional features including on/off command, remote sensing, and under-voltage lockout make the design suitable for today's space design applications.

The converter is enclosed in a hermetically sealed package with the overall dimensions of 3.5"L x 2.50"W x 0.475"H including the I/O pins and mounting tabs. The package base material is Aluminum-Silicon-Carbide (AISiC). The package ring frame is Alloy 48. The package utilizes rugged ceramic feed-through copper core I/O pins and is sealed using parallel seam welding. The total mass of a converter is less than 110 grams.

Manufactured in a facility fully qualified to MIL-PRF-38534, these converters are fabricated utilizing DLA Land and Maritime qualified processes. For available screening options, refer to device screening table in the data sheet.

28V Input, Single Output

Features

- Total Ionization Dose (TID) > 100 kRad(Si)
- SEE Hardened to LET Level > 82 MeV•cm²/mg
- Internal EMI filter
- Low Weight, < 110 grams
- Magnetically Coupled Feedback
- 18V to 40V DC Input Range
- Up to 50W Output Power
- Single Output Models Include 1V, 1.5V, 1.8V, 3.3V and 5V
- High Efficiency to 87%
- -55°C to +85°C Operating Temperature Range
- 100MΩ @ 100V_{DC} Isolation
- Under-Voltage Lockout
- Short Circuit and Overload Protection
- Output Voltage Adjust
- Synchronization Output and Input
- Remote Sense
- External Inhibit

Applications

- Geostationary Earth Orbit Satellites (GEO)
- Deep Space Satellites / Probes
- Strategic Weapons and Communication System

Non-flight versions of the GH-Series converters are available for system development purposes. Variations in electrical specifications and screening to meet custom requirements can be accommodated.

Specifications

Absolute Maximum Ratings		Recommended Operating Cor	ecommended Operating Conditions		
Input voltage range	-0.5V _{DC} to +60V _{DC}	Input voltage range ¹	+18 V_{DC} to +40 V_{DC}		
Output power	Internally limited	Output power	0 to Max. Rated		
Lead temperature	+300°C for 10 seconds	Operating case temperature	-55°C to +85°C		
Operating case temperature	-55°C to +125°C (Note 13)	Operating case temperature ¹	-55°C to +70°C		
Storage temperature	-55°C to +135°C				

^{1.} Meets derating per MIL-STD-975

Electrical Performance Characteristics

5	Group A	Conditions -55°C ≤ T _C ≤ +85°C		Limits		
Parameter	Subgroup	V _{IN} = 28V DC ± 5%, C _L = 0 unless otherwise specified	Min	Nom	Мах	Unit
Input Voltage			18	28	40	V
Output Voltage (V _{OUT}) GH2801S GH2801R5S GH2801R8S GH2803R3S GH2805S	1 1 1 1 1	I _{OUT} = 100% rated load, Note 3	0.98 1.48 1.77 3.28 4.98	1.00 1.50 1.80 3.30 5.00	1.02 1.52 1.83 3.32 5.02	v
GH2801S GH2801R5S GH2801R8S GH2803R3S GH2805S	2,3 2,3 2,3 2,3 2,3 2,3		0.96 1.45 1.75 3.24 4.93		1.04 1.55 1.85 3.36 5.07	
Output power (P _{OUT}) GH2801S GH2801R5S GH2801R8S GH2803R3S GH2805S	1,2,3	V _{IN} = 18, 28, 40 Volts, Note 2	0 0 0 0 0		20 30 36 50 50	w
Output current (I _{OUT}) GH2801S GH2801R5S GH2801R8S GH2803R3S GH2805S	1,2,3	V _{IN} = 18, 28, 40 Volts, Note 2	0 0 0 0 0		20 20 20 15.15 10	А
Line regulation (VR _{LINE})	1,2,3	V _{IN} = 18, 28, 40 Volts I _{OUT} = 0, 50%, 100% rated	-10		10	mV
Load regulation (VR _{LOAD})	1,2,3	I _{OUT} = 0, 50%, 100% rated V _{IN} = 18, 28, 40 Volts	-0.5		0.5	%
Input current (I _{IN})	1,2,3	I _{OUT} = 0, Pin 3 open Pin 3 shorted to pin 2		130 2.0	200 5.0	mA
Switching frequency (F_S)	1,2,3	Sync. Input (Pin 4) open	450	500	550	kHz

For Notes to Electrical Performance Characteristics, refer to page 4.

Electrical Performance Characteristics (continued)

	Group A	Conditions		Limits		
Subgroup V _{IN} = 28V D		-55°C ≤ T _C ≤ +85°C V _{IN} = 28V DC ± 5%, C _L = 0 unless otherwise specified	Min	Nom	Max	Unit
Synchronization Input frequency range pulse high level pulse low level pulse transition time pulse duty cycle		Ext. Clock on Sync. Input (Pin 4) Note 1	450 4.0 -0.5 80 20		600 10.0 0.5 80	kHz V V V/μs %
Output ripple (V _{RIP}) GH2801S GH2801R5S GH2801R8S GH2803R3S GH2805S	1,2,3	I _{OUT} = 100% rated load Note 4		5 5 5 10 10	15 15 15 25 30	mVp-p
Efficiency (E _{FF}) GH2801S GH2801R5S GH2801R8S GH2803R3S GH2805S	1	I _{OUT} = 100% rated load	70 72 75 83 85	73 75 78 85 87		%
Inhibit Input open circuit voltage drive current (sink) voltage range	1,2,3	Note 1	3.0 -0.5		5.0 100 50	V μA V
Current Limit Point Expressed as a percentage of full rated load current	1,2,3	V _{OUT} = 90% of Nominal		125	135	%
Power dissipation, load fault (P_D)	1,2,3	Short Circuit, Overload, Note 6		17	25	W
Output response to step load changes (V _{TLD}) GH2801S GH2801R5S GH2801R8S GH2803R3S GH2805S	4,5,6	Half Load to/from Full Load, Note 7	-300 -300 -300 -300 -300 -300		300 300 300 300 300 300	mVpk
Recovery time, step load changes (T _{TLD}) GH2801S GH2801R5S GH2801R8S GH2803R3S GH2805S	4,5,6	Half Load to/from Full Load, Notes 7, 8			250 250 250 250 250 250	μs
Output response to step line changes (V _{TLN})	4,5,6	24V to/from 32V I _{OUT} = 100% rated load, Notes 1, 9	-50		50	mVpk

For Notes to Electrical Performance Characteristics, refer to page 4.

Electrical Performance Characteristics (continued)

	Group A	Conditions -55°C ≤ T _C ≤ +85°C	Limits			
Parameter	Subgroup	$V_{IN} = 28V DC \pm 5\%$, $C_L = 0$ unless otherwise specified	Min	Nom	Max	Unit
Recovery time, step line changes (T _{TLN})	4,5,6	24V to/from 32V I _{OUT} = 100% rated load, Notes 1, 8, 9			200	μs
Turn-on Response Overshoot (V _{OSH}) Turn-on Delay (T _{DLY})	4,5,6	No Load, Full Load Note 10	0		250 5.0	mV ms
Capacitive Load (C _L)		I _{OUT} = 100% rated load No effect on DC performance Notes 1, 5			5000	μF
Line Rejection		I _{OUT} = 100% rated load DC to 50kHz, Note 1	40	60		dB
Electromagnetic Interference (EMI), conducted emission (C_E)		I _{OUT} = 100% rated load, Note 1	Per Fig. 3			
Isolation	1	Input to Output or Any Pin to Case except pin 13, test @ 100VDC	100			MΩ
Device Mass					110	g
MTBF		MIL-HDBK-217F2, SF, 35°C, Note 11	5.8x10 ⁶			Hrs

Notes for Electrical Performance Characteristics Table

- 1. Parameter is tested as part of design characterization or after design changes. Thereafter, parameter shall be guaranteed to the limits specified.
- 2. Parameter verified during line and load regulation tests.
- 3. These are beginning-of-life (BOL) limits. End-of-life (EOL) limits are -3% and +3% of nominal limit for Min and Max, respectively.
- 4. Guaranteed for a D.C. to 20MHz bandwidth. Tested using a 20kHz to 10MHz bandwidth.
- 5. Capacitive load may be any value from 0 to the maximum limit without compromising dc performance. A capacitive load in excess of the maximum limit may interfere with the proper operation of the converter's overload protection, causing erratic behavior during turn-on.
- 6. Overload power dissipation is defined as the device power dissipation with the load set such that V_{OUT} = 90% of nominal.
- 7. Load step slew rate $\leq 0.5 A/\mu s$.
- Recovery time is measured from the initiation of the transient to where V_{OUT} has returned to within ±1% of its steady state value.
- 9. Line step slew rate $\leq 1.0V/\mu s$.
- 10. Turn-on delay time from either a step application of input power or a logic low to a logic high transition on the inhibit pin (pin 3) to the point where $V_{OUT} = 90\%$ of nominal.
- 11. MIL-HDBK MOSFET failure rates replaced by empirical failure rate data supplied by IR HiRel.

Radiation Performance Characteristics

Test Inspection	Method	Min	Тур	Unit
Total Ionizing Dose (Gamma)	MIL-PRF-883, Method 1019.5 Operating bias applied during exposure, Half Rated Load, V _{IN} = 28V	100		kRads(Si)
Single Event Effects SEU, SEL, SEGR, SEB	Heavy lons (LET) Operating bias applied during exposure, Half Rated Load, V _{IN} = 18V, 28V & 50V Test lab: Cyclotron Institute Texas A & M University	82		MeV∙cm²/mg

IR HiRel currently does not have a DLA Land and Maritime certified Radiation Hardness Assurance Program.

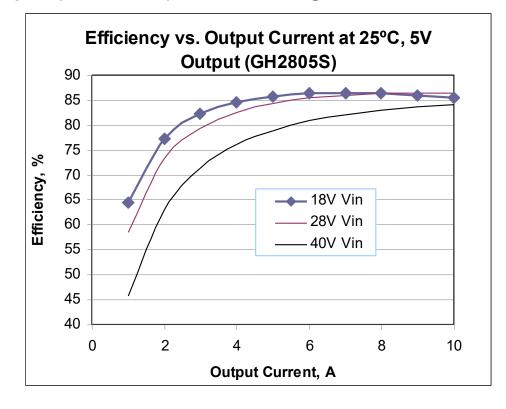
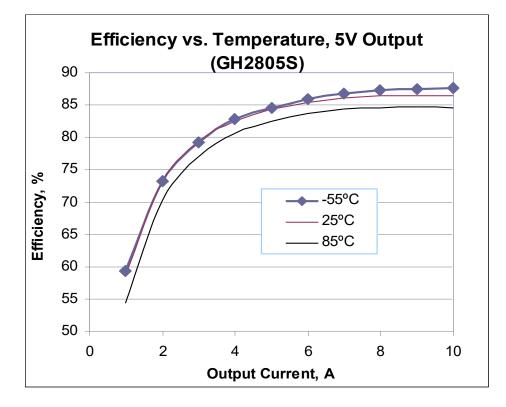
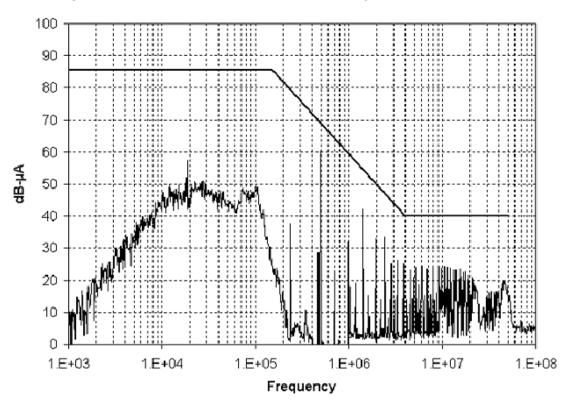
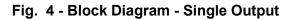




Fig. 1 – Typical Efficiency vs Output Current @ 25°C, 5V Output (GH2805S)


Fig. 2 – Typical Efficiency vs Temperature, 5V Output (GH2805S)



Application Note:

The GH-Series converters have an *Output Adjust* pin (pin 12), which when connected via an external resistor (R_{ADJ}) to either the –sense (pin 11) or +sense (pin 6), allows the nominal output voltage to be adjusted. Use the following equations with the parameters listed in Table 1 to calculate the required resistor value (R_{ADJ}).

For **all Models**, to adjust the output voltage higher:

$$R_{ADJ} = \frac{2 \times A}{V_{OUT} - V_{NOM}} - B$$

where: **R**_{ADJ} is in Kohms

 R_{ADJ} is connected to -sense and $V_{NOM} < V_{OUT} < 1.1V_{NOM}$ V_{NOM} is the nominal output voltage with the Adjust Pin left open V_{OUT} is the desired output voltage **A** and **B** are parameters defined in Table 1

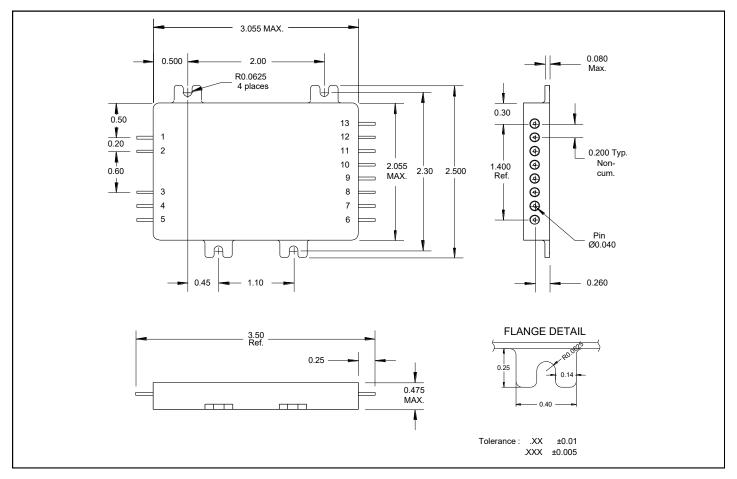
For all Models, to adjust the output voltage lower:

$$R_{ADJ} = \frac{1}{\left(\frac{A}{C(V_{OUT} - A)} - 0.5\right)} - B$$

where: **R**_{ADJ} is in Kohms

 \textbf{R}_{ADJ} is connected to +sense and D < V_{\text{OUT}} < V_{NOM}

 \mathbf{V}_{NOM} is the nominal output voltage with the Adjust Pin left open


 \mathbf{V}_{OUT} is the desired output voltage

A, B, C and D are parameters defined in Table 1

MODEL	EQUATION PARAMETERS				
MODEL	Α	В	С	D	
GH2801S	0.714	14.3	5.0	0.965	
GH2801R5S	0.937	12.6	3.33	1.425	
GH2801R8S	1.047	11.5	2.78	1.689	
GH2803R3S	1.425	8.34	1.52	2.937	
GH2805S	1.667	6.68	1.0	4.233	

Mechanical Outline

Pin #	Designation	Pin #	Designation
1	Input	8	Output
2	Input Return	9	Output Return
3	Inhibit	10	Output Return
4	Sync Input	11	- Sense
5	Sync Output	12	Output Adjust
6	+ Sense	13	Case
7	Output		

Pin Designation

Orderable Part Numbers and DLA SMD Numbers

If a DLA SMD is available as listed in the table below, such model shall be ordered using the DLA SMD number. Otherwise the model shall be ordered using the part number nomenclature.

Orderable Part Number	IR HiRel Model
5962-1021702KXA	GH2801S/CKA
5962-1021702KXC	GH2801S/CKC
5962-1021701KXA	GH2803R3S/CKA
5962-1021701KXC	GH2803R3S/CKC
5962-1021901KXA	GH2805S/CKA
5962-1021901KXC	GH2805S/CKC

Device Screening


Part Number Designator		/EM ①	/CK @	5962-xxxxxxKyy ③
Compliance Level	MIL-PRF-38534	_	K level compliant	Class K SMD
Certification Mark		_	СК	QML
Screening Requirement	MIL-STD-883 Method	—	_	—
Temperature Range	—	Room Temperature	-55°C to +85°C	-55°C to +85°C
Element Evaluation	MIL-PRF-38534	N/A	Class K	Class K
Non-Destructive Bond Pull	2023	N/A	Yes	Yes
Internal Visual	2017	IR Defined	Yes	Yes
Temperature Cycle	1010	N/A	Cond C	Cond C
Constant Acceleration	2001, Y1 Axis	N/A	3000 Gs	3000 Gs
PIND	2020	N/A	Cond A	Cond A
Burn-In	1015	N/A	320 hrs @ 125°C (2 x 160 hrs)	320 hrs @ 125°C (2 x 160 hrs)
Final Electrical (Group A)	MIL-PRF-38534 & Specification	Room Temperature	-55°C, +25°C, +85°C	-55°C, +25°C, +85°C
PDA	MIL-PRF-38534	N/A	2%	2%
Seal, Fine and Gross	1014	N/A	Cond CH	Cond CH
Radiographic	2012	N/A	Yes	Yes
External Visual	2009	IR Defined	Yes	Yes

Notes:

- "EM" grade shall only be form, fit and function equivalent to its Flight Model (FM) counterpart for electrical evaluation, and it may not meet the radiation performance. The EM Model shall not be expected to comply with MIL-PRF-38534 flight quality/workmanship standards, and configuration control. An EM build may use electrical equivalent commercial grade components
- CK" grade is the flight model (FM) compliant to K Level screening as defined in the DLA Land and Maritime MIL-PRF-38534 requirements, but is not necessarily a DLA Land and Maritime qualified SMD per MIL-PRF-38534. The governing document for this part number designator is the IR HiRel datasheet (this document). Radiation rating as stated in the "Radiation Performance Characteristics" section, is verified by analysis and test per IR HiRel internal procedure. The part is marked with the IR base part number and the "CK" certification mark.
- ③ "Class K SMD" grade has a DLA qualified SMD per DLA MIL-PRF-38534 Class K which is the governing document for this part. The part is marked with the IR base part number, the SMD part number and the "QML" certification mark.

Part Numbering

one source. one solution." www.micross.com

Americas: 1.855.426.6766 EMEA & APAC: +44 (0) 1603.788967 China: +85 21.5459.1970 India: +91 7760.990.545

Micross Components reserves the right to change products or specifications without notice.