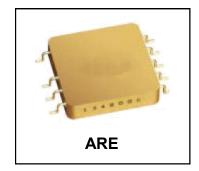
PD-97838C

ARE SERIES

HIGH RELIABILITY RADIATION HARDENED LOW POWER **DC-DC CONVERTER**

Description


The ARE Series of DC-DC converters are low power radiation hardened, high reliability devices designed for radiation environments such as those encountered by geostationary earth orbit satellites, deep space probes and communication systems. Features include small size, high efficiency, low weight and a high tolerance to total ionizing dose, single event effects and environmental stresses such as temperature extremes, mechanical shock, and vibration.

The ARE Series converters incorporate a fixed frequency flyback topology with magnetic feedback. All models include an external inhibit port. They are encased in a hermetic 1.20" x 1.20" x 0.31" AISi package and weigh less than 15 grams. The package utilizes rugged ceramic feed-through copper core pins and is hermetically sealed using laser welding.

Environmental screening includes temperature cycling, constant acceleration, fine and gross leak, and burn-in as specified by MIL-PRF-38534 for class K hybrids.

Non-flight versions of the ARE Series converters are available for system development purposes. Variations in electrical specifications and screening to meet custom requirements can be accommodated.

28V Input, Dual Output

Features

- Total Dose Guaranteed to 100 kRads(Si)
- SEE with LET up to 64 MeV.cm²/mg
- Low Weight < 15 grams •
- Magnetically Coupled Feedback
- 18V to 50V DC Input Range
- Up to 5W Output Power
- **Dual Output Models Include** ±5, ±12 and ±15V
- Low Quiescent Current
- High Efficiency to 80%
- -55°C to +85°C Operating Temperature Range •
- 100MΩ @ 100V DC Isolation
- Under-Voltage Lockout
- Short Circuit and Overload Protection
- External Inhibit
- Output Adjustment

Applications

- Geostationary Earth Orbit Satellites (GEO)
- Deep Space Satellites / Probes
- Strategic Weapons and Communication System

Circuit Description

The ARE Series converters utilize a flyback topology with a nominal switching frequency of 400 kHz. Electrical isolation and tight output regulation are achieved through the use of a magnetically coupled feedback.

Output current is limited under any load fault condition to approximately 165% of rated current. The converter will resume normal operation when the load current is reduced below the current limit point. This protects the converter from both overload and short circuit conditions. There are no latching elements included in the load fault protection circuits to eliminate the possibility of falsely triggering the protection circuits during single event radiation exposure.

An under-voltage lockout circuit prohibits the converter from operating when the line voltage is too low to maintain the output voltage. The converter will not start until the line voltage rises to approximately 17 volts and will shut down when the input voltage drops below 16 volts. The hysteresis reduces the possibility of line noise interfering with the converter's start-up and shut down circuitry. An external inhibit port is provided to control converter operation. The converter's operation is inhibited when this pin is pulled low. It is intended to be driven by an open collector device. The pin may be left open for normal operation and has a nominal open circuit voltage of about 13V.

Design Methodology

The ARE Series was developed using a proven conservative design methodology, which includes selecting radiation tolerant, and established reliability components and fully de-rating to the requirements of MIL-STD-975, MIL-STD-1547, and NASA EE-INST-002. Conservative de-rating of the radiation-hardened power MOSFET virtually eliminates the possibility of SEGR and SEB. A magnetic feedback circuit is utilized instead of opto-couplers to minimize temperature, radiation and aging sensitivity. PSPICE was used extensively to predict and optimize circuit performance for both beginning and end-of-life. Thorough design analyses include Worst Case, Stress, Thermal, Failure Modes and Effects (FMEA) and Reliability (MTBF).

Specifications

Absolute Maximum Ratings		Recommended Operating Conditions			
Input Voltage	-0.5V _{DC} to +60V _{DC}	Input Voltage	+18 V_{DC} to +50 V_{DC}		
Output power	Internally limited	Output power	0 to Max. Rated		
Lead Temperature	+300°C for 10 seconds				
Operating temperature	-55°C to +125°C	Operating temperature	-55°C to +85°C		
Storage temperature	-55°C to +135°C	Operating temperature Note 1	-55°C to +70°C		

Electrical Performance Characteristics: BOL (Beginning of Life)

Perometer	Group A	Conditions -55°C ≤ T _c ≤ +85°C	Limits			
Parameter	Subgroup	$V_{IN} = 28V DC \pm 5\%$, $C_L = 0uF$ unless otherwise specified	Min	Nom	Мах	Unit
Input voltage (V _{IN})			18	28	50	V
Output voltage (V _{OUT}) ARE2805D ARE2812D ARE2815D	1,2,3 1,2,3 1,2,3	I _{OUT} = 100% rated load Note 3	±4.95 ±11.88 ±14.85	±5.00 ±12.00 ±15.00	±5.05 ±12.12 ±15.15	v
Output power (P _{OUT})	1,2,3	V _{IN} = 18, 28, 50 Volts, Note 4	0		5.0	W
Output current (I _{OUT}) ARE2805D ARE2812D ARE2815D	1,2,3	V _{IN} = 18, 28, 50 Volts, Note 4 Either Output, Note 5 Either Output, Note 5 Either Output, Note 5	0 0 0		0.8 0.33 0.27	А
Line regulation (VR _{LINE}) (Measured +V _{OUT} to -V _{OUT})	1, 4	V _{IN} = 18, 28, 50 Volts I _{OUT} = 0, 50%, 100% rated, Note 3	-0.50		0.50	%
Load regulation (VR _{LOAD}) (Measured +V _{OUT} to –V _{OUT})	1,2,3 4,5,6	I _{OUT} = 0, 50%, 100% rated, Note 3 V _{IN} = 18, 28, 50 Volts	-1.0		1.0	%
Total regulation (Line & Load) (Measured + V_{OUT} to - V_{OUT})	1,2,3	V _{IN} = 18, 28, 50 Volts I _{OUT} = 0, 50%, 100% rated, Note 6	-1.0		1.0	%
Cross regulation (VR _{CROSS}) ARE2805D ARE2812D ARE2815D	1,2,3	Duals only, Note 7 V _{IN} = 18, 28, 50 Volts	-3.5 -3.0 -2.5		3.5 3.0 2.5	%
Input current (I _{IN})	4.0.0	I _{OUT} = 0, Pin 4 open			15	
	1,2,3	Pin 4 shorted to Pin 2			1.5	mA
Switching frequency (F _S)	1,2,3		350	400	450	kHz
Output ripple (V _{RIP}) ARE2805D ARE2812D ARE2815D	1,2,3	V _{IN} = 18, 28, 50 Volts I _{OUT} = 100% rated load Notes 3, 8		15 15 15	50 60 80	mVp-p
Efficiency (E _{FF}) ARE2805D ARE2812D ARE2815D	1,2,3	I _{OUT} = 100% rated load Note 3	76 76 76	79 80 81		%

For Notes to Electrical Performance Characteristics, refer to page 5

Electrical Performance Characteristics (continued)

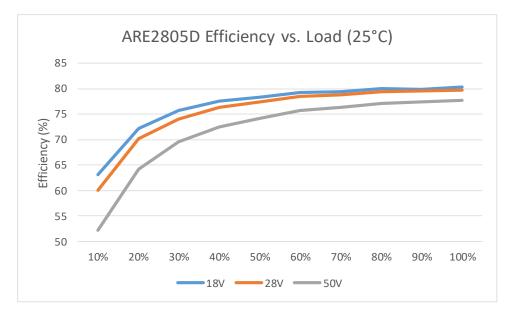
Parameter	Group A	Conditions -55°C ≤ T _C ≤ +85°C	Limits			Unit
Farameter	Subgroup	V _{IN} = 28V DC ± 5%, C _L = 0uF unless otherwise specified	Min	Nom	Мах	Unit
Enable input (inhibit function) Open circuit voltage Drive current (sink) Voltage range	1,2,3	Note 9	11		14 800 50	V µA V
Current limit point Expressed as a percentage of full rated load current	1,2,3	V _{OUT} = 90% of Nominal, Note 3	120		200	%
Power dissipation, load fault (P_D)	1,2,3	Short Circuit, Overload, Note 10			3.0	W
Under Voltage Threshold Release (On) Lockout (OFF) Hysteresis (UVR-UVLO)	1,2,3		14.5 0.4	1.5	17.5	v
Output response to step load changes (V _{TLD})	4,5,6	Half load to/ from Full load, Notes 3, 11	-300		300	mVpk
Recovery time, step load changes (T _{TLD})	4,5,6	Half load to/from Full load, Notes 3, 11,12			200	μs
Output response to step line changes (V _{TLN})	4,5,6	18V to/from 50V I _{OUT} =100% rated load, Notes 3, 9,13	-300		300	mVpk
Recovery time, step line changes (T _{TLN})	4,5,6	18V to/from 50V I _{OUT} =100% rated load, Notes 3, 9, 12,13			200	μs
Turn-on response Overshoot (V _{OS}) Turn-on Delay (T _{DLY})	4,5,6	No load, Full load Notes 3,14	1.5		500 10	mV ms
Capacitive load (C _L) ARE2805D ARE2812D ARE2815D	1	I _{OUT} = 100% rated load No effect on DC performance Notes 3, 9, 15			300 90 60	μF
Line rejection	1	I _{OUT} = 100% rated load DC to 50 kHz, Notes 3, 9		50		dB
Isolation	1	Input to Output or Any Pin to Case except Pin 1, test @ 100VDC	100			MΩ
Device weight					15	g
MTBF		MIL-HDBK-217F2, SF, 35°C	8.0 x 10 ⁶			Hours

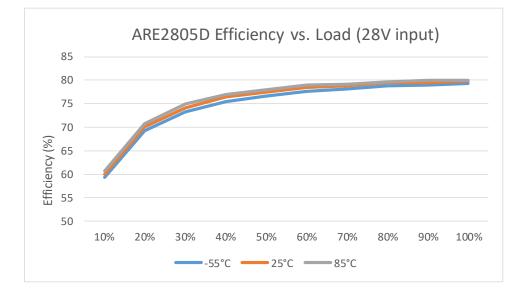
For Notes to Electrical Performance Characteristics, refer to page 5

Notes: Electrical Performance Characteristics

- Operating temperature range within which the converter operation meets the de-rating per MIL-STD-975, MIL-STD-1547, NASA EEE-INST-002 when VIN nominal is 28V and VIN worst case is 50V with the following exception: for ceramic capacitors with a voltage stress of less than 10V, de-rating requirements are for minimum 100V rated capacitors, however the product uses capacitors with a minimum rating of 16V.
- The subgroups (SG) below refer to MIL-PRF-38534 Appendix C, Group A. SG 1 is static test at +25°C, SG 2 is static test at +85°C, SG 3 is static test at -55°C. SG 4 is dynamic test at +25°C, SG 5 is dynamic test at +85°C, SG 6 is dynamic test at -55°C
- 3. Load current split equally between outputs on dual output models.
- 4. Parameter verified during line and load regulation tests.
- 5. Output load current must be distributed such that at least 20% of the total load current is being provided by one of the outputs.
- 6. Total regulation is +/- 3% for end of life.
- 7. Cross regulation is measured with 20% rated load on output under test while changing the load on the other output from 20% to 80% of rated.
- 8. Guaranteed for a D.C. to 20 MHz bandwidth. Tested using a 20 kHz to 10 MHz bandwidth.
- 9. Parameter is tested as part of design characterization or after design changes. Thereafter, parameter shall be guaranteed to the limits specified.
- 10. Overload power dissipation is defined as the device power dissipation with the load set such that V_{OUT} = 90% of nominal.
- 11. Load step transition time \geq 10 µs.
- 12. Recovery time is measured from the initiation of the transient to where V_{OUT} has returned to within ±1% of its steady state value.
- 13. Line step transition time \geq 100 µs.
- 14. Turn-on delay time from either a step application of input power or a logic low to a logic high transition on the inhibit pin (Pin 4) to the point where V_{OUT} = 90% of nominal.
- 15. Capacitive load may be any value from 0 to the maximum limit without compromising dc performance.

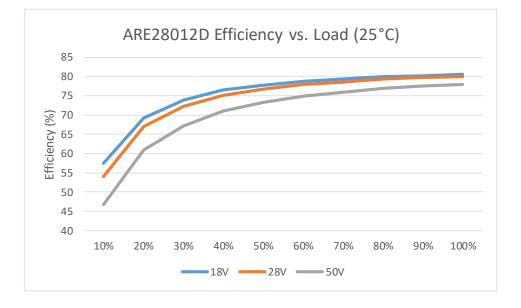
Radiation Performance Characteristics

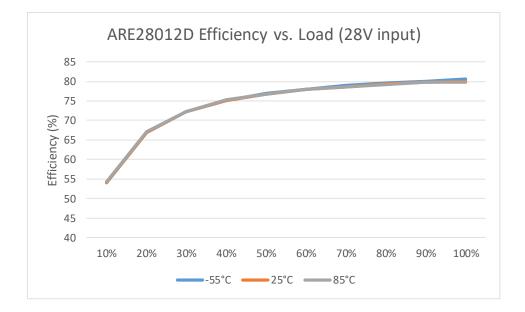

Test	Conditions		Тур	Мах	Unit
Total Ionizing Dose (TID) (Gamma)	Operating bias applied during exposure, Half Rated Load, V _{IN} = 28V T _C = +25°C, 14-50 Rads/s	100		150	kRrads(Si)
Single Event Effects (SEE) SEU, SEL, SEGR, SEB - Note 1	Heavy lons (LET) Operating bias applied during exposure, Full Rated Load, V _{IN} = 18V, 28V, 50V - Note 2	58	61	64	MeV.cm²/mg

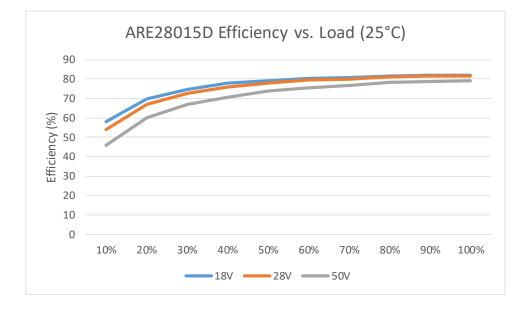

Notes:

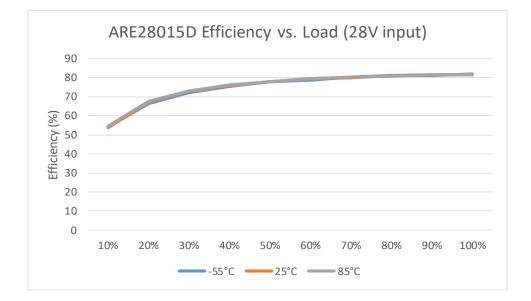
1. Output perturbation is less than + 5% / -10% of nominal output voltage.

2. Beam condition: LET = 61±5% MeV.cm²/mg


Efficiency Curves :




Efficiency Curves :



Efficiency Curves :

Input Ripple Current:

In the ARE Series converters, as shown in the Block diagrams (page 10), there is no series inductor before the input capacitor. Therefore, the input ripple current measurement depends on the series impedance between the power source and the converter input. The input ripple current shall be measured with a known inductor value and a large capacitor connected between the power source and the ARE Series converter. The capacitor is used to minimize the source impedance supplying the converter. The ripple current is measured with a current probe connected between the converter and the large capacitor. In order to reduce the input ripple current, the AF28461 filter may be used between the source voltage and the ARE Series converters.

Output Voltage Adjustment:

Output of ARE series can be adjusted to be greater or less than the nominal output voltage with an external resistor. However, the ranges of the output voltages are limited depending on the model as specified in Table 1. An approximate value of the resistor can be determined using the following formula.

For Dual Output Model: Radj = [A - (B x 2Vout)] / [(C x 2Vout) – D]

Where:

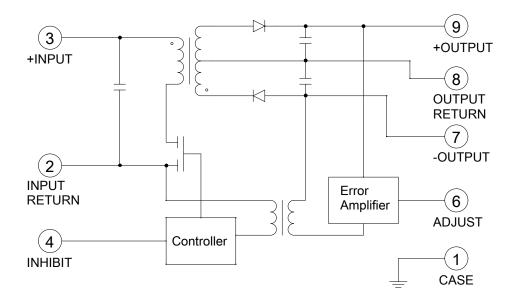
Radj is the value of the external resistor in ohms and is connected as specified in Table 1. Power rating of the resistor shall be ≥ 0.125 W. A Metal film resistor with temperature coefficient a of $\le \pm 50$ ppm and tolerance of $\ge 1\%$ is recommended. However, the final selection is dependent on specific design requirements.

Vout is the desired output voltage in volts.

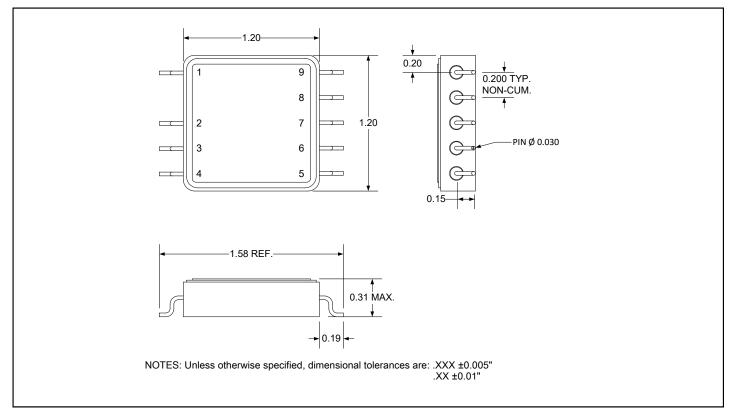
A, B, C, and D are unique constants depending on the model as shown in Table 1.

Model	Output Voltage Range	Radj connection between	A	В	С	D
	5.0 to 5.5	Pin 6 & Pin 7	3.8E+9	300.0E+6	10.0E+3	100.0E+3
ARE2805D	4.5 to 5.0	Pin 6 & Pin 9	1.5E+9	240.0E+6	4.0E+3	40.0E+3
ARE2812D	12.0 to 13.2	Pin 6 & Pin 7	9.4E+9	300.0E+6	10.0E+3	240.0E+3
ARE2012D	10.8 to 12.0	Pin 6 & Pin 9	3.7E+9	464.0E+6	4.0E+3	96.0E+3
ARE2815D	15.0 to 16.5	Pin 6 & Pin 7	11.8E+9	300.0E+6	10.0E+3	300.0E+3
ARE2015D	13.5 to 15.0	Pin 6 & Pin 9	4.7E+9	560.0E+6	4.0E+3	120.0E+3

Table 1: Dual Output Voltage Ranges, Constants and Resistor connection by Model


Application Notes:

See Application Note AN-1204 for the following:


- 1. Overload/short circuit power dissipation.
- 2. Output filtering.
- 3. Attachment of converter.

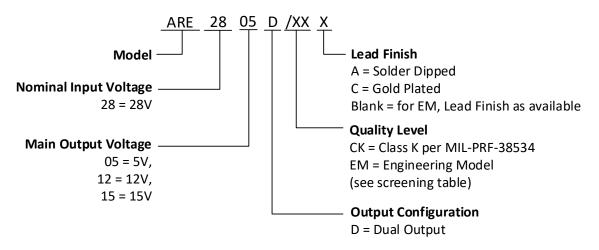
Block Diagram

Mechanical Outline

Pin Designation

Pin #	Designation	Pin #	Designation
1	Case Ground	6	Adjust
2	Input Return	7	- Output
3	+ Input	8	Output Return
4	Inhibit	9	+ Output
5	NC		

Device Screening


Part Number Designator		/ EM ①	/CK @
Compliance Level	MIL-PRF-38534	—	K level compliant
Certification Mark			СК
Screening Requirement	MIL-STD-883 Method	_	—
Temperature Range	_	Room Temperature	-55°C to +85°C
Element Evaluation	MIL-PRF-38534	N/A	Class K
Non-Destructive Bond Pull	2023	N/A	Yes
Internal Visual	2017	IR Defined	Yes
Temperature Cycle	1010	N/A	Cond C
Constant Acceleration	2001, Y1 Axis	N/A	3000 Gs
PIND	2020	N/A	Cond A
Burn-In	1015	N/A	320 hrs @ 125°C (2 x 160 hrs)
Final Electrical (Group A)	MIL-PRF-38534 & Specification	Room Temperature	-55°C, +25°C, +85°C
PDA	MIL-PRF-38534	N/A	2%
Seal, Fine and Gross	1014	N/A	Cond CH
Radiographic	2012	N/A	Yes
External Visual	2009	IR Defined	Yes

Notes:

- "EM" grade parts are strictly intended to permit the customer to determine the electrical functionality of the device in the customer's application in ambient conditions. The use of EM devices in production applications presents an unquantifiable risk of failure and IR HiRel disclaims all responsibility for such failure.
- CK" grade is the flight model (FM) compliant to K Level screening as defined in the DLA Land and Maritime MIL-PRF-38534 requirements, but is not necessarily a DLA Land and Maritime qualified SMD per MIL-PRF-38534. The governing document for this part number designator is the IR HiRel datasheet (this document). Radiation rating as stated in the "Radiation Performance Characteristics" section, is verified by analysis and test per IR HiRel internal procedure. The part is marked with the IR base part number and the "CK" certification mark.

Part Numbering

one source. one solution." www.micross.com

Americas: 1.855.426.6766 EMEA & APAC: +44 (0) 1603.788967 China: +85 21.5459.1970 India: +91 7760.990.545

Micross Components reserves the right to change products or specifications without notice.