

1N5614 thru 1N5622 S2M thru S0M

Rectifier Diode, up to 1KV, 2A, **Standard Recovery**

HIGH-RELIABILITY PRODUCTS

Features

- Low Reverse Leakage Current
- Hermetically Sealed Non-cavity Parts •
- Good Thermal Shock Resistance •
- Low Forward Voltage Drop •
- Qualified to MIL-PRF-19500/427, Levels JAN Thru • JANS

Quick Reference Data

- V_{RWM} = 200 to1,000 Volts •
- $I_{f} = 2.0 A$ •
- trr = 2.0 µsec

Electrical specifications	(Electrical specifications at T=25°C unless otherwise specified)
---------------------------	--

Part Number	Symbol	1N5614 S2M	1N5616 S4M	1N5618 S6M	1N5620 S8M	1N5622 S0M	Units
Working Reverse Voltage		200	400	600	800	1,000	Volts
Repetitive Reverse Voltage	V _{RRM}	200	400	600	800	1,000	Volts
Minimum Breakdown Voltage	V _{BR}	220	440	660	880	1,100	Volts
Maximum Forward Current ¹	I _{F(AV)}			2.0			Amps
Maximum Repetitive Surge Current ¹	IFRM			10			Amps
Max Surge Current. tp=8.3msec	IFSM			30			Amps
I ² t for fusing (t=8.3msec)	l²t			5.0			A ² S
Maximum Reverse Leakage Current at 25°C V _{RWM} 125°C	I _{R1} I _{R2}			0.5 25			µAmps
Maximum Forward Voltage Drop at I _F ² 1.0A 3.0A	VF			1.1 1.5			Volts
Storage and Operating Junction Temperatures	Tstg, Tj		-	-65 to +17	5		°C
Max. Thermal Resistance. L=0.375"	R _{θJL}			36			°C/W
Maximum Recovery Time ³	t _{rr}	2.0				µsec	
Typical Junction Capacitance ⁴	Cj	23				pF	

@ 55°C, Lead length 0.375" 1)

2)

 t_p =300µs 2% max. duty cycle Recovery conditions IF=0.5A , IR=1.0A, IRR=0.25A 3)

4) V_r=5.0V, f=1MHz

Outline Drawing

Axial types 1N5614 through 1N5622, S2M through S0M.

Letter	Inches		Millim	Notes	
	Min	Мах	Min	Мах	
BD	0.065	0.110	1.65	2.79	2
BL	0.130	0.205	3.30	5.21	3
LD	0.026	0.033	0.66	0.84	
LL	1.00	1.50	25.4	38.1	

Notes:

- 1. Dimensions are in inches. Millimeters are given for general information only
- 2. Dimension BD shall be measured at the largest diameter
- 3. The BL dimension shall include the entire body including slugs and sections of the leads over which the diameter is uncontrolled. The uncontrolled area is the zone between the edge of the diode body and extending .050 inch (1.27 mm) onto the leads.
- 4. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology

Rev. 2

www.micross.com

Page 3 of 5 Proprietary & Confidential micross

Ordering Information

Part Number	Description ⁽¹⁾
1N5614 thru 1N5622 S2M thru S0M	Axial Leaded Part
1N5614.TR thru 1N5622.TR S2M.TR thru S0M.TR	Tape and Reel Axial Parts

Notes:

1. Please consult factory for quantities